IPV-4 masternodes explained

IPV-4 Masternodes requires a static IP address, a copy of the blockchain so they are able to provide proof-of-service.

Here is some more background info about IPV-4 networks:

IPv4 explained

Internet Protocol version 4
Is Stack: yes
Purpose: internetworking protocol
Developer: DARPA
Date: 1981
Osilayer: Network layer
Rfcs: RFC 791

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production in the ARPANET in 1983. It still routes most Internet traffic today,[1] despite the ongoing deployment of a successor protocol, IPv6. IPv4 is described in IETF publication RFC 791 (September 1981), replacing an earlier definition (RFC 760, January 1980).

IPv4 uses a 32-bit address space which provides 4,294,967,296 (232) unique addresses, but large blocks are reserved for special networking methods.

Purpose

The Internet Protocol is the protocol that defines and enables internetworking at the internet layer of the Internet Protocol Suite. In essence it forms the Internet. It uses a logical addressing system and performs routing, which is the forwarding of packets from a source host to the next router that is one hop closer to the intended destination host on another network.

IPv4 is a connectionless protocol, and operates on a best effort delivery model, in that it does not guarantee delivery, nor does it assure proper sequencing or avoidance of duplicate delivery. These aspects, including data integrity, are addressed by an upper layer transport protocol, such as the Transmission Control Protocol (TCP).

Addressing

IPv4 uses 32-bit addresses which limits the address space to (232) addresses.

IPv4 reserves special address blocks for private networks (~18 million addresses) and multicast addresses (~270 million addresses).

Address representations

IPv4 addresses may be represented in any notation expressing a 32-bit integer value. They are most often written in dot-decimal notation, which consists of four octets of the address expressed individually in decimal numbers and separated by periods.

For example, the quad-dotted IP address 192.0.2.235 represents the 32-bit decimal number 3221226219, which in hexadecimal format is 0xC00002EB. This may also be expressed in dotted hex format as 0xC0.0x00.0x02.0xEB, or with octal byte values as 0300.0000.0002.0353.

CIDR notation combines the address with its routing prefix in a compact format, in which the address is followed by a slash character (/) and the count of consecutive 1 bits in the routing prefix (subnet mask).

Other address representations were in common use when classful networking was practiced. For example, the loopback address 127.0.0.1 is commonly written as 127.1, given that it belongs to a class-A network with eight bits for the network mask and 24 bits for the host number. When fewer than four numbers are specified in the address in dotted notation, the last value is treated as an integer of as many bytes as are required to fill out the address to four octets. Thus, the address 127.65530 is equivalent to 127.0.255.250.

Allocation

In the original design of IPv4, an IP address was divided into two parts: the network identifier was the most significant octet of the address, and the host identifier was the rest of the address. The latter was also called the rest field. This structure permitted a maximum of 256 network identifiers, which was quickly found to be inadequate.

To overcome this limit, the most-significant address octet was redefined in 1981 to create network classes, in a system which later became known as classful networking. The revised system defined five classes. Classes A, B, and C had different bit lengths for network identification. The rest of the address was used as previously to identify a host within a network. Because of the different sizes of fields in different classes, each network class had a different capacity for addressing hosts. In addition to the three classes for addressing hosts, Class D was defined for multicast addressing and Class E was reserved for future applications.

Dividing existing classful networks into subnets began in 1985 with the publication of . This division was made more flexible with the introduction of variable-length subnet masks (VLSM) in in 1987. In 1993, based on this work, introduced Classless Inter-Domain Routing (CIDR),[2] which expressed the number of bits (from the most significant) as, for instance, /24, and the class-based scheme was dubbed classful, by contrast. CIDR was designed to permit repartitioning of any address space so that smaller or larger blocks of addresses could be allocated to users. The hierarchical structure created by CIDR is managed by the Internet Assigned Numbers Authority (IANA) and the regional Internet registries (RIRs). Each RIR maintains a publicly searchable WHOIS database that provides information about IP address assignments.

Special-use addresses

The Internet Engineering Task Force (IETF) and the Internet Assigned Numbers Authority (IANA) have restricted from general use various reserved IP addresses for special purposes. Notably these addresses are used for multicast traffic and to provide addressing space for unrestricted uses on private networks.

 

Special address blocks!Address block!Address range!Number of addresses!Scope!Description
0.0.0.0/8 0.0.0.0–0.255.255.255   Software Current network[3] (only valid as source address).
10.0.0.0/8 10.0.0.0–10.255.255.255   Private network Used for local communications within a private network.[4]
100.64.0.0/10 100.64.0.0–100.127.255.255   Private network Shared address space[5] for communications between a service provider and its subscribers when using a carrier-grade NAT.
127.0.0.0/8 127.0.0.0–127.255.255.255   Host Used for loopback addresses to the local host.
— “Note that 128.66.0.0/24 has been used for some examples in the past. However, this block did not appear in the list of special prefixes in RFC 3330 or its successors, and the block is therefore not reserved for any special purpose. The block can be used for regular address assignments with caution.” excerpt from RFC 5737. –> 169.254.0.0/16 169.254.0.0–169.254.255.255   Subnet Used for link-local addresses[6] between two hosts on a single link when no IP address is otherwise specified, such as would have normally been retrieved from a DHCP server.
172.16.0.0/12 172.16.0.0–172.31.255.255   Private network Used for local communications within a private network.
192.0.0.0/24 192.0.0.0–192.0.0.255   Private network IETF Protocol Assignments.
192.0.2.0/24 192.0.2.0–192.0.2.255   Documentation Assigned as TEST-NET-1, documentation and examples.[7]
192.88.99.0/24 192.88.99.0–192.88.99.255   Internet Reserved.[8] Formerly used for IPv6 to IPv4 relay[9] (included IPv6 address block 2002::/16).
192.168.0.0/16 192.168.0.0–192.168.255.255   Private network Used for local communications within a private network.
198.18.0.0/15 198.18.0.0–198.19.255.255   Private network Used for benchmark testing of inter-network communications between two separate subnets.[10]
198.51.100.0/24 198.51.100.0–198.51.100.255   Documentation Assigned as TEST-NET-2, documentation and examples.
203.0.113.0/24 203.0.113.0–203.0.113.255   Documentation Assigned as TEST-NET-3, documentation and examples.
224.0.0.0/4 224.0.0.0–239.255.255.255   Internet In use for IP multicast.[11] (Former Class D network).
240.0.0.0/4 240.0.0.0–255.255.255.254   Internet Reserved for future use.[12] (Former Class E network).
255.255.255.255/32 255.255.255.255   Subnet Reserved for the “limited broadcast” destination address.[13]  

Private networks

Of the approximately four billion addresses defined in IPv4, about 18 million addresses in three ranges are reserved for use in private networks. Packets addresses in these ranges are not routable in the public Internet; they are ignored by all public routers. Therefore, private hosts cannot directly communicate with public networks, but require network address translation at a routing gateway for this purpose.

 

 

Reserved private IPv4 network ranges
Name CIDR block Address range Number of addresses Classful description
24-bit block 10.0.0.0/8 10.0.0.0 – 10.255.255.255   Single Class A.
20-bit block   172.16.0.0/12 172.16.0.0 – 172.31.255.255   Contiguous range of 16 Class B blocks.
16-bit block 192.168.0.0/16 192.168.0.0 – 192.168.255.255   Contiguous range of 256 Class C blocks.  

Since two private networks, e.g., two branch offices, cannot directly interoperate via the public Internet, the two networks must be bridged across the Internet via a virtual private network (VPN) or an IP tunnel, which encapsulates packets, including their headers containing the private addresses, in a protocol layer during transmission across the public network. Additionally, encapsulated packets may be encrypted for transmission across public networks to secure the data.

Link-local addressing

RFC 3927 defines the special address block 169.254.0.0/16 for link-local addressing. These addresses are only valid on the link (such as a local network segment or point-to-point connection) directly connected to a host that uses them. These addresses are not routable. Like private addresses, these addresses cannot be the source or destination of packets traversing the internet. These addresses are primarily used for address autoconfiguration (Zeroconf) when a host cannot obtain an IP address from a DHCP server or other internal configuration methods.

When the address block was reserved, no standards existed for address autoconfiguration. Microsoft created an implementation called Automatic Private IP Addressing (APIPA), which was deployed on millions of machines and became a de facto standard. Many years later, in May 2005, the IETF defined a formal standard in RFC 3927, entitled Dynamic Configuration of IPv4 Link-Local Addresses.

Loopback

See main article: Localhost. The class A network 127.0.0.0 (classless network 127.0.0.0/8) is reserved for loopback. IP packets whose source addresses belong to this network should never appear outside a host. Packets received on a non-loopback interface with a loopback source or destination address must be dropped.

Addresses ending in 0 or 255

The first address in a subnet is used to identify the subnet itself. The last address is used as a local broadcast address for all devices on the subnet.

For example, in the subnet 192.168.5.0/255.255.255.0 (192.168.5.0/24) the identifier 192.168.5.0 commonly is used to refer to the entire subnet. To avoid ambiguity in representation, the address ending in the octet 0 is reserved.[14]

A broadcast address is an address that allows information to be sent to all interfaces in a given subnet, rather than a specific machine. The broadcast address is the last address in the address range of the subnet. For example, the broadcast address for the network 192.168.5.0 is 192.168.5.255. For networks of size /24 or larger, the broadcast address always ends in 255.

  Binary form Dot-decimal notation
Network space 11000000.10101000.00000101.'''00000000''' 192.168.5.0
Broadcast address 11000000.10101000.00000101.'''11111111''' 192.168.5.255
In bold, is shown the host part of the IP address; the other part is the network prefix. The host gets inverted (logical NOT), but the network prefix remains intact.  

However, this does not mean that every address ending in 0 or 255 cannot be used as a host address. For example, in the /16 subnet 192.168.0.0/255.255.0.0, which is equivalent to the address range 192.168.0.0–192.168.255.255, the broadcast address is 192.168.255.255. One can use the following addresses for hosts, even though they end with 255: 192.168.1.255, 192.168.2.255, etc. Also, 192.168.0.0 is the network identifier and must not be assigned to an interface.[15] The addresses 192.168.1.0, 192.168.2.0, etc., may be assigned, despite ending with 0.

In the past, conflict between network addresses and broadcast addresses arose because some software used non-standard broadcast addresses with zeros instead of ones.[16]

In networks smaller than /24, broadcast addresses do not necessarily end with 255. For example, a CIDR subnet 203.0.113.16/28 has the broadcast address 203.0.113.31.

  Binary form Dot-decimal notation
Network space 11001011.00000000.01110001.0001'''0000''' 203.0.113.16
Broadcast address 11001011.00000000.01110001.0001'''1111''' 203.0.113.31
In bold, is shown the host part of the IP address; the other part is the network prefix. The host gets inverted (logical NOT), but the network prefix remains intact.  

As a special case, a /31 network has capacity for just two hosts. These networks are typically used for point-to-point connections. There is no network identifier or broadcast address for these networks.

Address resolution

See main article: Domain Name System. Hosts on the Internet are usually known by names, e.g., www.example.com, not primarily by their IP address, which is used for routing and network interface identification. The use of domain names requires translating, called resolving, them to addresses and vice versa. This is analogous to looking up a phone number in a phone book using the recipient’s name.

The translation between addresses and domain names is performed by the Domain Name System (DNS), a hierarchical, distributed naming system that allows for the subdelegation of namespaces to other DNS servers.

Address space exhaustion

See main article: IPv4 address exhaustion. Since the 1980s, it was apparent that the pool of available IPv4 addresses was depleting at a rate that was not initially anticipated in the original design of the network.[17] The main market forces that accelerated address depletion included the rapidly growing number of Internet users, who increasingly used mobile computing devices, such as laptop computerspersonal digital assistants (PDAs), and smart phones with IP data services. In addition, high-speed Internet access was based on always-on devices. The threat of exhaustion motivated the introduction of a number of remedial technologies, such as Classless Inter-Domain Routing (CIDR) methods by the mid 1990s, pervasive use of network address translation (NAT) in network access provider systems, and strict usage-based allocation policies at the regional and local Internet registries.

The primary address pool of the Internet, maintained by IANA, was exhausted on 3 February 2011, when the last five blocks were allocated to the five RIRs.[18] [19] APNIC was the first RIR to exhaust its regional pool on 15 April 2011, except for a small amount of address space reserved for the transition technologies to IPv6, which is to be allocated under a restricted policy.[20]

The long-term solution to the impending address exhaustion was the 1998 specification of a new version of the Internet Protocol, IPv6,[21] which increased the address size to 128 bits. It provides a vastly increased address space, but also allows improved route aggregation across the Internet, and offers large subnetwork allocations of a minimum of 264 host addresses to end-users. However, IPv4 is not directly interoperable with IPv6, so that IPv4-only hosts cannot directly communicate with IPv6-only hosts. With the phase-out of the 6bone experimental network starting in 2004, permanent formal deployment of IPv6 commenced in 2006.[22] Completion of IPv6 deployment is expected to take considerable time,[23] so that intermediate transition technologies are necessary to permit hosts to participate in the Internet using both versions of the protocol.

Packet structure

An IP packet consists of a header section and a data section.

An IP packet has no data checksum or any other footer after the data section.Typically the link layer encapsulates IP packets in frames with a CRC footer that detects most errors,and typically the end-to-end TCP layer checksum detects most other errors.[24]

Header

The IPv4 packet header consists of 14 fields, of which 13 are required. The 14th field is optional and aptly named: options. The fields in the header are packed with the most significant byte first (big endian), and for the diagram and discussion, the most significant bits are considered to come first (MSB 0 bit numbering). The most significant bit is numbered 0, so the version field is actually found in the four most significant bits of the first byte, for example.

IPv4 Header Format
Offsets Octet 0 1 2 3
  Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Version IHL DSCP ECN Total Length
4 32 Identification Flags Fragment Offset
8 64 Time To Live Protocol Header Checksum
12 96 Source IP Address
16 128 Destination IP Address
20 160 Options (if IHL > 5)
24 192
28 224
32 256  
The IPv4 header is variable in size due to the optional 14th field (options). The IHL field contains the size of the IPv4 header, it has 4 bits that specify the number of 32-bit words in the header. The minimum value for this field is 5,[25] which indicates a length of 5 × 32 bits = 160 bits = 20 bytes. As a 4-bit field, the maximum value is 15, this means that the maximum size of the IPv4 header is 15 × 32 bits, or 480 bits = 60 bytes.
The fragment offset field is measured in units of eight-byte blocks. It is 13 bits long and specifies the offset of a particular fragment relative to the beginning of the original unfragmented IP datagram. The first fragment has an offset of zero. This allows a maximum offset of (213 – 1) × 8 = 65,528 bytes, which would exceed the maximum IP packet length of 65,535 bytes with the header length included (65,528 + 20 = 65,548 bytes).
The options field is not often used. Note that the value in the IHL field must include enough extra 32-bit words to hold all the options (plus any padding needed to ensure that the header contains an integer number of 32-bit words). The list of options may be terminated with an EOL (End of Options List, 0x00) option; this is only necessary if the end of the options would not otherwise coincide with the end of the header. The possible options that can be put in the header are as follows:
Field Size (bits) Description
Copied 1 Set to 1 if the options need to be copied into all fragments of a fragmented packet.
Option Class 2 A general options category. 0 is for “control” options, and 2 is for “debugging and measurement”. 1 and 3 are reserved.
Option Number 5 Specifies an option.
Option Length 8 Indicates the size of the entire option (including this field). This field may not exist for simple options.
Option Data Variable Option-specific data. This field may not exist for simple options.  
  • Note: If the header length is greater than 5 (i.e., it is from 6 to 15) it means that the options field is present and must be considered.
  • Note: Copied, Option Class, and Option Number are sometimes referred to as a single eight-bit field, the Option Type.

Packets containing some options may be considered as dangerous by some routers and be blocked.[26]

The table below shows the defined options for IPv4. Strictly speaking, the column labeled “Option Number” is actually the “Option Value” that is derived from the Copied, Option Class, and Option Number bits as defined above. However, since most people today refer to this combined bit set as the “option number,” this table shows that common usage. The table shows both the decimal and the hexadecimal option numbers. [27]

Option Number Option Name Description
0 / 0x00 EOOL End of Option List
1 / 0x01 NOP No Operation
2 / 0x02 SEC Security (defunct)
7 / 0x07 RR Record Route
10 / 0x0A ZSU Experimental Measurement
11 / 0x0B MTUP MTU Probe
12 / 0x0C MTUR MTU Reply
15 / 0x0F ENCODE ENCODE
25 / 0x19 QS Quick-Start
30 / 0x1E EXP RFC3692-style Experiment
68 / 0x44 TS Time Stamp
82 / 0x52 TR Traceroute
94 / 0x5E EXP RFC3692-style Experiment
130 / 0x82 SEC Security (RIPSO)
131 / 0x83 LSR Loose Source Route
133 / 0x85 E-SEC Extended Security (RIPSO)
134 / 0x86 CIPSO Commercial IP Security Option
136 / 0x88 SID Stream ID
137 / 0x89 SSR Strict Source Route
142 / 0x8E VISA Experimental Access Control
144 / 0x90 IMITD IMI Traffic Descriptor
145 / 0x91 EIP Extended Internet Protocol
147 / 0x93 ADDEXT Address Extension
148 / 0x94 RTRALT Router Alert
149 / 0x95 SDB Selective Directed Broadcast
151 / 0x97 DPS Dynamic Packet State
152 / 0x98 UMP Upstream Multicast Pkt.
158 / 0x9E EXP RFC3692-style Experiment
205 / 0xCD FINN Experimental Flow Control
222 / 0xDE EXP RFC3692-style Experiment  

Data

The packet payload is not included in the checksum. Its contents are interpreted based on the value of the Protocol header field.

Some of the common payload protocols are:

Protocol Number Protocol Name Abbreviation
1   ICMP
2   IGMP
6   TCP
17   UDP
41   ENCAP
89   OSPF
132   SCTP  
See List of IP protocol numbers for a complete list.

Fragmentation and reassembly

See main article: IP fragmentation. The Internet Protocol enables traffic between networks. The design accommodates networks of diverse physical nature; it is independent of the underlying transmission technology used in the link layer. Networks with different hardware usually vary not only in transmission speed, but also in the maximum transmission unit (MTU). When one network wants to transmit datagrams to a network with a smaller MTU, it may fragment its datagrams. In IPv4, this function was placed at the Internet Layer, and is performed in IPv4 routers, which thus require no implementation of any higher layers for the function of routing IP packets.

In contrast, IPv6, the next generation of the Internet Protocol, does not allow routers to perform fragmentation; hosts must determine the path MTU before sending datagrams.

Fragmentation

When a router receives a packet, it examines the destination address and determines the outgoing interface to use and that interface’s MTU. If the packet size is bigger than the MTU, and the Do not Fragment (DF) bit in the packet’s header is set to 0, then the router may fragment the packet.

The router divides the packet into fragments. The max size of each fragment is the MTU minus the IP header size (20 bytes minimum; 60 bytes maximum). The router puts each fragment into its own packet, each fragment packet having following changes:

  • The total length field is the fragment size.
  • The more fragments (MF) flag is set for all fragments except the last one, which is set to 0.
  • The fragment offset field is set, based on the offset of the fragment in the original data payload. This is measured in units of eight-byte blocks.
  • The header checksum field is recomputed.

For example, for an MTU of 1,500 bytes and a header size of 20 bytes, the fragment offsets would be multiples of

  1500-20
8

=185

.These multiples are 0, 185, 370, 555, 740, …

It is possible that a packet is fragmented at one router, and that the fragments are further fragmented at another router. For example, a packet of 4,520 bytes, including the 20 bytes of the IP header (without options) is fragmented to two packets on a link with an MTU of 2,500 bytes:

Fragment Size
(bytes)
Header size
(bytes)
Data size
(bytes)
Flag
More fragments
Fragment offset
(8-byte blocks)
1 2500 20 2480 1 0
2 2040 20 2020 0 310  

The total data size is preserved: 2480 bytes + 2020 bytes = 4500 bytes.The offsets are

0

and
  0+2480
8

=310

.

On a link with an MTU of 1,500 bytes, each fragment results in two fragments:

Fragment Size
(bytes)
Header size
(bytes)
Data size
(bytes)
Flag
More fragments
Fragment offset
(8-byte blocks)
1 1500 20 1480 1 0
2 1020 20 1000 1 185
3 1500 20 1480 1 310
4 560 20 540 0 495  

Again, the data size is preserved: 1480 + 1000 = 2480, and 1480 + 540 = 2020.

Also in this case, the More Fragments bit remains 1 for all the fragments that came with 1 in them and for the last fragment that arrives, it works as usual, that is the MF bit is set to 0 only in the last one. And of course, the Identification field continues to have the same value in all re-fragmented fragments. This way, even if fragments are re-fragmented, the receiver knows they have initially all started from the same packet.

The last offset and last data size are used to calculate the total data size:

495 x 8+540=3960+540=4500

.

Reassembly

A receiver knows that a packet is a fragment, if at least one of the following conditions is true:

  • The flag “more fragments” is set, which is true for all fragments except the last.
  • The field “fragment offset” is nonzero, which is true for all fragments except the first.

The receiver identifies matching fragments using the foreign and local address, the protocol ID, and the identification field. The receiver reassembles the data from fragments with the same ID using both the fragment offset and the more fragments flag. When the receiver receives the last fragment, which has the “more fragments” flag set to 0, it can calculate the size of the original data payload, by multiplying the last fragment’s offset by eight, and adding the last fragment’s data size. In the given example, this calculation was 495*8 + 540 = 4500 bytes.

When the receiver has all fragments, they can be reassembled in the correct sequence according to the offsets, to form the original datagram.

Assistive protocols

IP addresses are not tied in any permanent manner to hardware identifications and, indeed, a network interface can have multiple IP addresses in modern operating systems. Hosts and routers need additional mechanisms to identify the relationship between device interfaces and IP addresses, in order to properly deliver an IP packet to the destination host on a link. The Address Resolution Protocol (ARP) performs this IP-address-to-hardware-address translation for IPv4. (A hardware address is also called a MAC address.) In addition, the reverse correlation is often necessary. For example, when an IP host is booted or connected to a network it needs to determine its IP address, unless an address is preconfigured by an administrator. Protocols for such inverse correlations exist in the Internet Protocol Suite. Currently used methods are Dynamic Host Configuration Protocol (DHCP), Bootstrap Protocol (BOOTP) and, infrequently, reverse ARP.

See also

Notes

  1. Web site: BGP Analysis Reports . 2013-01-09.
  2. Web site: Understanding IP Addressing: Everything You Ever Wanted To Know . https://web.archive.org/web/20010616012053/http://www.3com.com/other/pdfs/infra/corpinfo/en_US/501302.pdf . June 16, 2001 . 3Com . dead.
  3. 6890. 153. Special-Purpose IP Address Registries. M. Cotton. L. Vegoda. R. Bonica. B. Haberman. April 2013. Internet Engineering Task Force. Updated by RFC 8190.
  4. 1918. 5. Address Allocation for Private Internets. Y. Rekhter. B. Moskowitz. D. Karrenberg. G. J. de Groot. E. Lear. February 1996. Network Working Group. Updated by RFC 6761.
  5. 6598. 153. IANA-Reserved IPv4 Prefix for Shared Address Space. J. Weil. V. Kuarsingh. C. Donley. C. Liljenstolpe. M. Azinger. April 2012. Internet Engineering Task Force (IETF). 2070-1721.
  6. 3927. Dynamic Configuration of IPv4 Link-Local Addresses. S. Cheshire. B. Aboba. E. Guttman. Network Working Group. May 2005.
  7. 5737. IPv4 Address Blocks Reserved for Documentation. J. Arkko. M. Cotton. L. Vegoda. Internet Engineering Task Force. January 2010. 2070-1721.
  8. 7526. 196. Deprecating the Anycast Prefix for 6to4 Relay Routers. O. Troan. B. Carpenter. Internet Engineering Task Force. May 2015.
  9. 3068. An Anycast Prefix for 6to4 Relay Routers. C. Huitema. Network Working Group. June 2001. Obsoleted by RFC 7526.
  10. 2544. Benchmarking Methodology for Network Interconnect Devices. S. Bradner. J. McQuaid. March 1999. Network Working Group. Updated by: RFC 6201 and RFC 6815.
  11. 5771. 51. IANA Guidelines for IPv4 Multicast Address Assignments. M. Cotton. L. Vegoda. D. Meyer. March 2010. Internet Engineering Task Force.
  12. 3232. Assigned Numbers: RFC 1700 is Replaced by an On-line Database. J. Reynolds. January 2002. Network Working Group. Obsoletes RFC 1700.
  13. 919. Broadcasting Internet Datagrams. Jeffrey Mogul. October 1984. Network Working Group.
  14. Web site: RFC 923 . June 1984 . IETF . 15 November 2019 . Special Addresses: In certain contexts, it is useful to have fixed addresses with functional significance rather than as identifiers of specific hosts. When such usage is called for, the address zero is to be interpreted as meaning “this”, as in “this network”..
  15. Web site: Requirements for Internet Hosts – Communication LayersRobert Braden. October 1989. IETF. 31. 1122.
  16. Web site: Requirements for Internet Hosts – Communication LayersRobert Braden. October 1989. IETF. 66. 1122.
  17. Web site: World ‘running out of Internet addresses’ . 2011-01-23 . dead . https://web.archive.org/web/20110125195711/http://technology.inquirer.net/infotech/infotech/view/20110121-315808/World-running-out-of-Internet-addresses . 2011-01-25 .
  18. Web site: Free Pool of IPv4 Address Space Depleted. Smith. Lucie. Lipner, Ian. 3 February 2011. Number Resource Organization. 3 February 2011.
  19. Web site: Five /8s allocated to RIRs – no unallocated IPv4 unicast /8s remain . ICANN,nanog mailing list.
  20. Web site: APNIC IPv4 Address Pool Reaches Final /8. 15 April 2011. Asia-Pacific Network Information Centre. 15 April 2011. dead. https://web.archive.org/web/20110807162057/http://www.apnic.net/publications/news/2011/final-8. 7 August 2011.
  21. Web site: Internet Protocol, Version 6 (IPv6) Specification. tools.ietf.org. en. 2019-12-13.
  22. RFC 3701, R. Fink, R. HInden, 6bone (IPv6 Testing Address Allocation) Phaseout (March 2004)
  23. Book: 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) : date, 3-6 Aug. 2016.. University of Technology, Mauritius,, Institute of Electrical and Electronics Engineers. 9781509007066. Piscataway, NJ. 972636788.
  24. RFC 1726 section 6.2
  25. Web site: Internet Protocol. Postel. J.. tools.ietf.org. en. 2019-03-12.
  26. Web site: Cisco unofficial FAQ . 2012-05-10.
  27. https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1

External links